
SOSP 2024

BIZA: Design of Self-Governing 
Block-Interface ZNS AFA for 
Endurance and Performance

Shushu Yi, Shaocong Sun, Li Peng, Yingbo Sun
Ming-Chang Yang, Zhichao Cao, Qiao Li, 

Myoungsoo Jung, Ke Zhou, Jie Zhang



Why We Need All-Flash Array (AFA)?

All-flash array are widely adopted in diverse domains.

SupercomputersDatacenters
PureStorage FlashArray

DELL EMC VMAX

NetApp AFF

AFA → Superb performance & reliability!

WD OPENFLEX



Open Question: I/O Interface Choices

Block Interface ZNS Interface

ZNS: Avoiding the Block Interface Tax for Flash-based SSDs (ATC’21) 
ZNS+: Advanced Zoned Namespace Interface for Supporting In-Storage Zone Compaction (OSDI’21) 

Conventional SSD

LBN 0 LBN 1 LBN 2 LBN 3 LBN 4 LBN 5

Flash Block 0 Flash Block 1

Flash Block 2 Flash Block 3

Zone 0 Zone 1 Zone 2

Flash Block 0 Flash Block 1

Flash Block 2 Flash Block 3

Zoned Namespace (ZNS) SSD

Stream 0

Stream 1

Stream 212 3 456



Open Question: I/O Interface Choices

Block Interface ZNS Interface

Conventional SSD

LBN 0 LBN 1 LBN 2 LBN 3 LBN 4 LBN 5

Flash Block 0 Flash Block 1

Flash Block 2 Flash Block 3

Zone 0 Zone 1 Zone 2

Flash Block 0 Flash Block 1

Flash Block 2 Flash Block 3

Zoned Namespace (ZNS) SSD

Stream 0

Stream 1

Stream 212 3 456

GC

(ATC’21) ZNS: Avoiding the Block Interface Tax for Flash-based SSDs
(OSDI’21) ZNS+: Advanced Zoned Namespace Interface for Supporting In-Storage Zone Compaction



Open Question: I/O Interface Choices

Block Interface ZNS Interface

Conventional SSD

LBN 0 LBN 1 LBN 2 LBN 3 LBN 4 LBN 5

Flash Block 0 Flash Block 1

Flash Block 2 Flash Block 3

Zone 0 Zone 1 Zone 2

Flash Block 0 Flash Block 1

Flash Block 2 Flash Block 3

Zoned Namespace (ZNS) SSD

Stream 0

Stream 1

Stream 212 3 456

GC

1 1 1 22 2

(ATC’21) ZNS: Avoiding the Block Interface Tax for Flash-based SSDs
(OSDI’21) ZNS+: Advanced Zoned Namespace Interface for Supporting In-Storage Zone Compaction



Existing Designs: Rob Peter to Pay Paul

l Block-interface AFA: mdraid (Linux default)[1], ScalaAFA (ATC’24)[2]

- Random writes → good compatibility

Upper-layer software

Block interface

Block interface

Block-interface AFA
(e.g., mdraid, ScalaAFA…)

H
os

t

[1] Linux. mdraid layer. h!ps://github.com/torvalds/linux/tree/master/drivers/md.
[2] ScalaAFA: Constructing User-Space All-Flash Array Engine with Holistic Designs (ATC’24) 

Good compatibility,
de facto choice 

for most application

Not aligned with
NAND flash features,

GC → bad performance
& write amp. NAND flash

GC Data Placement

Wear leveling Firmware

SS
D

, SSD-internal tasks → bad performance & write amplification



Existing Designs: Rob Peter to Pay Paul

l ZNS-interface AFA: RAIZN (ASPLOS’23)[1]

- host-managed tasks → holistic designs for optimization 

Upper-layer software

Block-interface AFA
(e.g., mdraid, ScalaAFA…)

Block interface

Block interface

NAND flash

GC Data Placement

Wear leveling Firmware

H
os

t
SS

D

ZNS-interface AFA
(e.g., RAIZN…)

ZNS interface

ZNS interface

Modified software
GC Data Placement

Bad compatibility,
need application 

modification

Aligned with
NAND flash features,

holistic designs
for optimization

NAND flash

Wear leveling Firmware

[1] RAIZN: Redundant Array of Independent Zoned Namespaces (ASPLOS’23)

, Sequential writes → bad compatibility 

l Block-interface AFA: mdraid (Linux default), ScalaAFA (ATC’24)
- Random writes → good compatibility, SSD-internal tasks → bad performance & write amplification



Interface Adapter: A Simple Solution

l Interface adapter: dm-zoned (Linux), dm-zap (Western Digital)
- Converting ZNS interface to block interface
- Maintaining mappings from block numbers to zone-related addresses

H
os

t
SS

D

ZNS-interface AFA
(e.g., RAIZN…)

ZNS interface

Upper-layer software

Block interface

GC Data Placement
Interface adapter

ZNS 
interface

ZNS
SSD

ZNS
SSD

ZNS
SSD …

dmzap+RAIZN

Block-interface AFA
(e.g., mdraid…)

Upper-layer software

Block interface

ZNS 
interface

ZNS
SSD

ZNS
SSD

ZNS
SSD …

mdraid+dmzap

Adapter Adapter Adapter…

Block 
interface

Bridged semantic gap, 
but failed to harvest the 

benefits of ZNS



Quantitative Analysis
l Experimental setup: 3+1 (RAID 5) Western Digital ZN540 4TB SSDs

- Peak throughput: 3265 MB/s and 2170 MB/s for read and write

Please refer to our paper for details.

- dmzap+RAIZN and mdraid+dmzap generate 33.3% and 54.6% more flash writes
- dm-zap muddles data with dfferent lifetimes in the same zones

Challenge 1: Short endurance

- dmzap+RAIZN and mdraid+dmzap only achieve 47.7% and 18.4% of the ideal throughput
- dm-zap submits writes serially and only allows one in-flight write per zone
- RAIZN relies on a centralized zone to buffer the frequently updated metadata

Challenge 2: Low throughput

- dmzap+RAIZN and mdraid+dmzap increase 99.99th tail latency by 10.3x and 2.2x after GC starts
- dm-zap handle GC and user I/O with the same I/O resources

Challenge 3: High tail latency

WD ZN540 SSD



Our Solution: BIZA
H

os
t

SS
D

ZNS-interface AFA
(e.g., RAIZN…)

ZNS interface

Upper-layer software

Block interface

GC Data Placement
Interface adapter

ZNS 
interface

ZNS
SSD

ZNS
SSD

ZNS
SSD …

dmzap+RAIZN

Block-interface AFA
(e.g., mdraid…)

Upper-layer software

Block interface

ZNS 
interface

ZNS
SSD

ZNS
SSD

ZNS
SSD …

mdraid+dmzap

Adapter Adapter Adapter…

Block 
interface BIZA

Upper-layer software

Block interface

ZNS 
interface

ZNS
SSD

ZNS
SSD

ZNS
SSD …

BIZA

Key insight: new features & internal parallelism



ZNS SSD Exploration: Zone Random Write Area
l NVMe Technical Proposal 4076b: Zone Random Write Area (ZRWA)

Write 
pointer

Zone opened with ZRWA

Written area Unwritten area



ZNS SSD Exploration: Zone Random Write Area
l NVMe Technical Proposal 4076b: Zone Random Write Area (ZRWA)

- Break the strict sequential write constraint
- An efficient abstraction of the write buffer within SSDs
- Battery-backed DRAM, NVM, or FTL-mapped high-endurance flash (e.g., SLC)

Zone opened with ZRWA

Written area Write 
pointer

ZRWA Unwritten area

Random write & in-place update
4
1 23

1 23 4



ZNS SSD Exploration: Zone Random Write Area
l NVMe Technical Proposal 4076b: Zone Random Write Area (ZRWA)

- Break the strict sequential write constraint
- An efficient abstraction of the write buffer within SSDs
- Battery-backed DRAM, NVM, or FTL-mapped high-endurance flash (e.g., SLC)

Zone opened with ZRWA

Written area Write 
pointer

ZRWA Unwritten area

5



ZNS SSD Exploration: Zone Random Write Area
l NVMe Technical Proposal 4076b: Zone Random Write Area (ZRWA)

- Break the strict sequential write constraint
- An efficient abstraction of the write buffer within SSDs
- Battery-backed DRAM, NVM, or FTL-mapped high-endurance flash (e.g., SLC)

Write 
pointer

Zone opened with ZRWA

Written area ZRWA Unwritten area

5
Flush to flash backend

Idea: absorb the frequently updated data within ZRWA



ZNS SSD Exploration: Zone Random Write Area
l NVMe Technical Proposal 4076b: Zone Random Write Area (ZRWA)

- Break the strict sequential write constraint
- An efficient abstraction of the write buffer within SSDs
- Battery-backed DRAM, NVM, or FTL-mapped high-endurance flash (e.g., SLC)

Write 
pointer

Zone opened with ZRWA

Written area ZRWA Unwritten area

5
Flush to flash backend

Idea: absorb the frequently updated data within ZRWA



Idea: absorb the frequently updated data within ZRWA

However, the size of ZRWA is very limited per ZNS SSD

Reuse distance of SYSTOR [1]

17%

[1] Understanding storage traffic characteristics on enterprise virtual desktop infrastructure. (SYSTOR’17)

ZNS SSD Zone
Capacity

ZRWA size
per open zone

Total
ZRWA size

WD
ZN540 1077 MB 1 MB 14 MB

DapuStor
J5500Z 18144 MB 1 MB 16 MB

Inpur
NS8600G 96 MB 1440 KB 11.25 MB

ZNS SSD Exploration: Zone Random Write Area



Idea: absorb the frequently updated data within ZRWA

However, the size of ZRWA is very limited per ZNS SSD

Reuse distance of SYSTOR [1]

17%

[1] Understanding storage traffic characteristics on enterprise virtual desktop infrastructure. (SYSTOR’17)

ZNS SSD Zone
Capacity

ZRWA size
per open zone

Total
ZRWA size

WD
ZN540 1077 MB 1 MB 14 MB

DapuStor
J5500Z 18144 MB 1 MB 16 MB

Inpur
NS8600G 96 MB 1440 KB 11.25 MB

ZNS SSD Exploration: Zone Random Write Area

How to use 
the limited size of ZRWA efficiently?



ZNS SSD Exploration: Intra-Zone Parallelism

[1] Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems (SYSTOR’13)

B

Write 
pointer

Written area ZRWA Unwritten area

Zone opened with ZRWA

A

l I/O stack has no guarantee on the orders of request submissions
- Reorder / merge I/O for high performance [1]

l Implicit I/O reorders may cause failures for parallel writes



ZNS SSD Exploration: Intra-Zone Parallelism

B

Write 
pointer

Written area ZRWA Unwritten area

Zone opened with ZRWA

A

l I/O stack has no guarantee on the orders of request submissions
- Reorder / merge I/O for high performance [1]

l Implicit I/O reorders may cause failures for parallel writes

A

[1] Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems (SYSTOR’13)



ZNS SSD Exploration: Intra-Zone Parallelism

B

Write 
pointer

Written area ZRWA Unwritten area

Zone opened with ZRWA

A

l I/O stack has no guarantee on the orders of request submissions
- Reorder / merge I/O for high performance [1]

l Implicit I/O reorders may cause failures for parallel writes

A B

[1] Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems (SYSTOR’13)



ZNS SSD Exploration: Intra-Zone Parallelism

B

Write 
pointer

Written area ZRWA Unwritten area

Zone opened with ZRWA

l I/O stack has no guarantee on the orders of request submissions
- Reorder / merge I/O for high performance [1]

l Implicit I/O reorders may cause failures for parallel writes

[1] Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems (SYSTOR’13)



ZNS SSD Exploration: Intra-Zone Parallelism

B

Write 
pointer

Written area ZRWA Unwritten area

Zone opened with ZRWA

A

l I/O stack has no guarantee on the orders of request submissions
- Reorder / merge I/O for high performance [1]

l Implicit I/O reorders may cause failures for parallel writes

B
X

[1] Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems (SYSTOR’13)



Supported by our solution

ZNS SSD Exploration: Intra-Zone Parallelism
l I/O stack has no guarantee on the orders of request submissions

- Reorder / merge I/O for high performance [1]

l Implicit I/O reorders may cause failures for parallel writes

l Only allow one-inflight write

Gap
Gap Gap

→ loses up to 65.3% throughput

[1] Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems (SYSTOR’13)



Supported by our solution

ZNS SSD Exploration: Intra-Zone Parallelism
l I/O stack has no guarantee on the orders of request submissions

- Reorder / merge I/O for high performance [1]

l Implicit I/O reorders may cause failures for parallel writes

l Only allow one-inflight write

Gap
Gap Gap

→ loses up to 65.3% throughput

How to enjoy ZRWA while
maximizing intra-zone parallelism?

[1] Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems (SYSTOR’13)



ZNS SSD Exploration: Inter-Zone Parallelism
l ZNS SSDs have multiple parallel I/O resources

- We call them I/O channels (may consist of multiple flash channels or chips)
- Zones from with separated I/O channels can handle I/O requests in parallel

Scenario Bandwidth
(MB/s)

Avg. lat.
(us)

99.99th lat.
(us)

Single zone 1092 59 570

Two zones in
diverse I/O channels 2170 59 685

SSD Architecture

NVMe
Controller

DRAM

Firmware

ARM
Processor

Flash
Controller

Flash
Controller

Flash
Controller

Flash
Controller

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

I/O 
Channel

I/O 
Channel

Write Tests

Zo
ne

 0
Zo

ne
 1



ZNS SSD Exploration: Inter-Zone Parallelism
l ZNS SSDs have multiple parallel I/O resources

- We call them I/O channels (may consist of multiple flash channels or chips)
- Zones from with separated I/O channels can handle I/O requests in parallel

SSD Architecture

NVMe
Controller

DRAM

Firmware

ARM
Processor

Flash
Controller

Flash
Controller

Flash
Controller

Flash
Controller

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

I/O 
Channel

Scenario Bandwidth
(MB/s)

Avg. lat.
(us)

99.99th lat.
(us)

Single zone 1092 59 570

Two zones in
diverse I/O channels 2170 59 685

Two zones in
Identical I/O channel 1092 118 2310

I/O 
Channel

Write Tests

Zo
ne

 0
Zo

ne
 2

l Give up the centralized metadata zone
l Schedule user I/O and GC with parallel zones



ZNS SSD Exploration: Inter-Zone Parallelism
l ZNS SSDs have multiple parallel I/O resources

- We call them I/O channels (may consist of multiple flash channels or chips)
- Zones from with separated I/O channels can handle I/O requests in parallel

SSD Architecture

NVMe
Controller

DRAM

Firmware

ARM
Processor

Flash
Controller

Flash
Controller

Flash
Controller

Flash
Controller

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

I/O 
Channel

Scenario Bandwidth
(MB/s)

Avg. lat.
(us)

99.99th lat.
(us)

Single zone 1092 59 570

Two zones in
diverse I/O channels 2170 59 685

Two zones in
Identical I/O channel 1092 118 2310

I/O 
Channel

Write Tests

Zo
ne

 0
Zo

ne
 2

l Give up the centralized metadata zone
l Schedule user I/O and GC with parallel zones

We don’t know the mappings 
between zones and I/O resources!



BIZA Overview
l Zone group selector

- Isolate hot chunks from cold ones
- For better utilization of the scarce ZRWA
- A set of zones mapped with diff. channels

l GC avoidance mechanism
- Schedule I/O and GC with parallel zones
- Exhaust inter-zone parallelism

l ZRWA-aware I/O scheduler
- Dispatches I/O requests in parallel
- Exhaust intra-zone parallelism

l I/O channel detection
- Collect I/O completion latency 
- Confirm the mappings between channels & zones

Overview of BIZA

Write req.

ZRWA-aware I/O scheduler

ZRWA UnwrittenZRWA Unwritten
ZRWAZRWA01010…... …...…

Zone
Bitmap

WrittenWritten

ZRWA-aware I/O scheduler

ZRWA Unwritten
ZRWA01010…... …...…

Zone
Bitmap

Written

LRU cache
Zone group selector

HR cacheHR cache HP cacheHP cache
Zone 
group

I/O channel detection
Ch. 0Ch. 0

Latency analysisZone x
Ch. MCh. MCh. 2Ch. 2Ch. 1Ch. 1 …

Vote

I/O channel detection
Ch. 0

Latency analysisZone x
Ch. MCh. 2Ch. 1 …

Vote

GC avoidance
ZoneZone
Zone group BUSY

ZoneZoneZoneZone ZoneZone
BUSY
ZoneZone

...

SSD 1

Zone 0Zone 0

Zone 1Zone 1

Zone NZone N

LBN PA SN

SN PA

Mapping tables

BMT

SMT

...

SSD K

Zone 0Zone 0

Zone 1Zone 1

Zone NZone N
...

Zone 0Zone 0

Zone 1Zone 1

Zone NZone N

SSD 0

...

All-Flash Array

1 Data &
parity

2 3

4

5

6
Sub.

7
Cplt.



BIZA Overview

l GC avoidance mechanism*
- Schedule I/O and GC with parallel zones
- Exhaust inter-zone parallelism

l ZRWA-aware I/O scheduler*
- Dispatches I/O requests in parallel
- Exhaust intra-zone parallelism

l I/O channel detection*
- Collect I/O completion latency 
- Confirm the mappings between channels & zones

*Please refer to our paper for more details.

Overview of BIZA

Write req.

ZRWA-aware I/O scheduler

ZRWA UnwrittenZRWA Unwritten
ZRWAZRWA01010…... …...…

Zone
Bitmap

WrittenWritten

ZRWA-aware I/O scheduler

ZRWA Unwritten
ZRWA01010…... …...…

Zone
Bitmap

Written

LRU cache
Zone group selector

HR cacheHR cache HP cacheHP cache
Zone 
group

I/O channel detection
Ch. 0Ch. 0

Latency analysisZone x
Ch. MCh. MCh. 2Ch. 2Ch. 1Ch. 1 …

Vote

I/O channel detection
Ch. 0

Latency analysisZone x
Ch. MCh. 2Ch. 1 …

Vote

GC avoidance
ZoneZone
Zone group BUSY

ZoneZoneZoneZone ZoneZone
BUSY
ZoneZone

...

SSD 1

Zone 0Zone 0

Zone 1Zone 1

Zone NZone N

LBN PA SN

SN PA

Mapping tables

BMT

SMT

...

SSD K

Zone 0Zone 0

Zone 1Zone 1

Zone NZone N
...

Zone 0Zone 0

Zone 1Zone 1

Zone NZone N

SSD 0

...

All-Flash Array

1 Data &
parity

2 3

4

5

6
Sub.

7
Cplt.

l Zone group selector
- Isolate hot chunks from cold ones
- For better utilization of the scarce ZRWA
- A set of zones mapped with diff. channels



Zone Group Selector

[1] S-RAC: SSD friendly caching for data center workloads. (SYSTOR’16)

l ZRWA will shift right when multiple new writes arrives 
l Isolate hot data with cold ones → Keep hot data in ZRWA for a longer time 
l Ghost-cache-based algorithm [1]

- High revenue = the chunk will be updated multiple times
- High profit = High revenue + Small cost (the chunk has short reuse distance)



Zone Group Selector

[1] S-RAC: SSD friendly caching for data center workloads. (SYSTOR’16)

l ZRWA will shift right when multiple new writes arrives 
l Isolate hot data with cold ones → Keep hot data in ZRWA for a longer time 

l Select different zone group for chunks in different cache
- High profit: can be updated multiple times within the limited ZRWA
- High revenue: hard to be absorbed in ZRWA but is the main source of GC

l Ghost-cache-based algorithm [1]

- High revenue = the chunk will be updated multiple times
- High profit = High revenue + Small cost (the chunk has short reuse distance)



Experimental Setup

l Constructing AFA with 4 commodity SSDs as RAID 5
l ZNS SSD: Western Digital ZN540 SSD 

- Read: 3265 MB/s, Write: 2170 MB/s
- Up to 14 open zones & 14 MB ZRWA

l Conventional SSD: Western Digital SN640 SSD 
- Read: 3331 MB/s, Write: 2250 MB/s
- Developed on a similar hardware basis as ZN540 SSD

l Comparison
- RAIZN: only support sequential write
- dmzap+RAIZN: stacking dm-zap on RAIZN for random writes
- mdraid+dmzap: stacking dm-zap on each ZNS SSD
- mdraid+ConvSSD: constructing AFA with conventional SSDs

WD ZN540 SSD

WD SN640 SSD

l Implemented as a device mapper in Linux kernel



Microbenchmark

l Bandwidth
- BIZA achieves 3.7x and 3.5x bandwidth than dmzap+RAIZN and mdraid+dmzap

RAIZN
dmzap+RAIZN
mdraid+dmzap
mdraid+ConvSSD
BIZA

3.7x



Microbenchmark

l Bandwidth
- BIZA achieves 3.7x and 3.5x bandwidth than dmzap+RAIZN and mdraid+dmzap
- Even 1.4x bandwidth than mdraid+ConvSSD (software overhead of mdraid[1-2])
- Almost exhaust the throughput of 4 ZNS SSDs (92.2% of the ideal)

RAIZN
dmzap+RAIZN
mdraid+dmzap
mdraid+ConvSSD
BIZA

[1] ScalaRAID: Optimizing linux software raid system for next-generation storage. (ATC’24)
[2] stRAID: Stripe-threaded architecture for parity-based RAIDs with ultra-fast SSDs. (ATC’22)



Microbenchmark

l Bandwidth
- BIZA achieves 3.7x and 3.5x bandwidth than dmzap+RAIZN and mdraid+dmzap
- Even 1.4x bandwidth than mdraid+ConvSSD (software overhead of mdraid[1-2])
- Almost exhaust the throughput of 4 ZNS SSDs (92.2% of the ideal)

l Average latency
- Outperform RAIZN by 53.8% for sequential writes

RAIZN
dmzap+RAIZN
mdraid+dmzap
mdraid+ConvSSD
BIZA

Lowest Latency 



Applications

l Filesystem: F2FS + filebench
- BIZA outperforms RAIZN by 26.6%, 24.9%, and 18.7% in randomwrite, fileserver, and oltp

RAIZN
mdraid+dmzap
mdraid+ConvSSD
BIZA

25%



Applications

l Filesystem: F2FS + filebench
- BIZA outperforms RAIZN by 26.6%, 24.9%, and 18.7% in randomwrite, fileserver, and oltp
- Most (95.2%) requests in webserver are read requests

RAIZN
mdraid+dmzap
mdraid+ConvSSD
BIZA



Applications

l Filesystem: F2FS + filebench
- BIZA outperforms RAIZN by 26.6%, 24.9%, and 18.7% in randomwrite, fileserver, and oltp
- Most (95.2%) requests in webserver are read requests

l Key-value store: RocksDB + F2FS + db_bench
- 10.5% higher throughput than RAIZN

RAIZN
mdraid+dmzap
mdraid+ConvSSD
BIZA

Highest Throughput 



Write Amplification Reduction

Write amplification Sensitivity study

l Reducing 41.0% flash writes (compared with mdraid+dmzap)

l Different sizes of ZRWA: larger ZRWA, less flash writes



Conclusion

l Existing interface choices of AFA are all unsatisfactory
- Block-interface alone, ZNS-interface alone, and adapter

- Endurance, performance, and compatibility

l BIZA: benefit from the openness of ZNS whilst exposing block interface
- Fully exploiting the emerging ZRWA feature
- Exhausting the intra-zone and inter-zone parallelism

l Significantly improve I/O performance while mitigates write amplification

l Source code is accessible at:
- https://github.com/ChaseLab-PKU/BIZA



SOSP 2024

Thanks & QA
BIZA: Design of Self-Governing Block-Interface ZNS AFA for Endurance and Performance

https://github.com/ChaseLab-PKU/BIZA

Shushu Yi, Shaocong Sun, Li Peng, Yingbo Sun
Ming-Chang Yang, Zhichao Cao, Qiao Li, 

Myoungsoo Jung, Ke Zhou, Jie Zhang


